

LMC6024 Low Power CMOS Quad Operational Amplifier General Description Ultra low input bias current 40 fA

The LMC6024 is a CMOS quad operational amplifier which can operate from either a single supply or dual supplies. Its performance features include an input common-mode range that reaches V[−] , low input bias current and voltage gain (into 100 kΩ and 5 kΩ loads) that is equal to or better than widely accepted bipolar equivalents, while the power supply requirement is less than 1 mW.

This chip is built with National's advanced Double-Poly Silicon-Gate CMOS process.

See the LMC6022 datasheet for a CMOS dual operational amplifier with these same features.

Features

- Specified for 100 kΩ and 5 kΩ loads
- High voltage gain 120 dB
- \blacksquare Low offset voltage drift 2.5 μ V/°C

Connection Diagram

-
- Input common-mode range includes V⁻
- Operating range from +5V to +15V supply
- Low distortion 0.01% at 1 kHz
- Slew rate 0.11 V/ μ s
- Micropower operation 1 mW

Applications

- High-impedance buffer or preamplifier
- Current-to-voltage converter
- **n** Long-term integrator
- Sample-and-hold circuit
- Peak detector
- Medical instrumentation
- Industrial controls

Top View

LMC6024 Low Power CMOS Quad Operational Amplifier

Absolute Maximum Ratings [\(Note 1\)](#page-3-0)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Operating Ratings

DC Electrical Characteristics

The following specifications apply for V⁺ = 5V, V⁻ = 0V, V_{CM} = 1.5V, V_O = 2.5V, and R_L = 1M unless otherwise noted. **Boldface** limits apply at the temperature extremes; all other limits $T_J = 25^{\circ}$ C.

AC Electrical Characteristics

The following specifications apply for V⁺ = 5V, V⁻ = 0V, V_{CM} = 1.5V, V_O = 2.5V, and R_L = 1M unless otherwise noted. **Boldface** limits apply at the temperature extremes; all other limits $T_J = 25°C$.

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.

Note 2: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature and/or multiple Op Amp shorts can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of ±30 mA over long term may adversly affect reliability.

Note 3: The maximum power dissipation is a function of T_{J(max)}, θ_{JA} , and T_A. The maximum allowable power dissipation at any ambient temperature is P_D = (T_{J(max)} $- T_A$)/θ_{JA}.

Note 4: Human body model, 100 pF discharge through a 1.5 kΩ resistor.

Note 5: Typical values represent the most likely parametric norm.

Note 6: All limits are guaranteed by testing or correlation.

Note 7: V⁺ = 15V, V_{CM} = 7.5V, and R_L connected to 7.5V. For Sourcing tests, 7.5V ≤ V_O ≤ 11.5V. For Sinking tests, 2.5V ≤ V_O ≤ 7.5V.

Note 8: V⁺ = 15V. Connected as Voltage Follower with 10V step input. Number specified is the slower of the positive and negative slew rates.

Note 9: Input referred, V⁺ = 15V and R_L = 100 kΩ connected to 7.5V. Each amp excited in turn with 1 kHz to produce V_O = 13 V_{PP}.

Note 10: For operating at elevated temperatures the device must be derated based on the thermal resistance θ_{JA} with P_D = (T_J − T_A)/θ_{JA}.

Note 11: All numbers apply for packages soldered directly into a PC board.

Note 12: Do not connect output to V⁺ when V⁺ is greater than 13V or reliability may be adversely affected.

Typical Performance Characteristics

 $V_S = \pm 7.5V$, $T_A = 25^{\circ}$ C unless otherwise specified

Output Characteristics Current Sinking

Input Voltage Noise vs Frequency

LMC6024 LMC6024

LMC6024 **LMC6024**

LMC6024 **LMC6024**

Stability vs Capacitive Load

Note 13: Avoid resistive loads of less than 500Ω, as they may cause instability.

LMC6024 LMC6024

Application Hints

AMPLIFIER TOPOLOGY

The topology chosen for the LMC6024 is unconventional (compared to general-purpose op amps) in that the traditional unity-gain buffer output stage is not used; instead, the output is taken directly from the output of the integrator, to allow rail-to-rail output swing. Since the buffer traditionally delivers the power to the load, while maintaining high op amp gain and stability, and must withstand shorts to either rail, these tasks now fall to the integrator.

As a result of these demands, the integrator is a compound affair with an embedded gain stage that is doubly fed forward (via C_f and C_{ff}) by a dedicated unity-gain compensation driver. In addition, the output portion of the integrator is a push-pull configuration for delivering heavy loads. While sinking current the whole amplifier path consists of three gain stages with one stage fed forward, whereas while sourcing the path contains four gain stages with two fed forward.

FIGURE 1. LMC6024 Circuit Topology (Each Amplifier)

The large signal voltage gain while sourcing is comparable to traditional bipolar op amps, for load resistance of at least 5 kΩ. The gain while sinking is higher than most CMOS op amps, due to the additional gain stage; however, when driving load resistance of 5 kΩ or less, the gain will be reduced as indicated in the Electrical Characterisitics. The op amp can drive load resistance as low as 500Ω without instability.

COMPENSATING INPUT CAPACITANCE

Refer to the LMC660 or LMC662 datasheets to determine whether or not a feedback capacitor will be necessary for compensation and what the value of that capacitor would be.

CAPACITIVE LOAD TOLERANCE

Like many other op amps, the LMC6024 may oscillate when its applied load appears capacitive. The threshold of oscillation varies both with load and circuit gain. The configuration most sensitive to oscillation is a unity-gain follower. See the Typical Performance Characteristics.

The load capacitance interacts with the op amp's output resistance to create an additional pole. If this pole frequency is sufficiently low, it will degrade the op amp's phase margin so that the amplifier is no longer stable at low gains. The addition of a small resistor (50Ω to 100Ω) in series with the op amp's output, and a capacitor (5 pF to 10 pF) from inverting input to output pins, returns the phase margin to a safe value without interfering with lower-frequency circuit operation. Thus, larger values of capacitance can be toler-

ated without oscillation. Note that in all cases, the output will ring heavily when the load capcitance is near the threshold for oscillation.

FIGURE 2. Rx, Cx Improve Capacitive Load Tolerance

Capacitive load driving capability is enhanced by using a pull up resistor to V⁺ *Figure 3*. Typically a pull up resistor conducting 50 µA or more will significantly improve capacitive load responses. The value of the pull up resistor must be determined based on the current sinking capability of the amplifier with respect to the desired output swing. Open loop gain of the amplifier can also be affected by the pull up resistor (see Electrical Characteristics).

FIGURE 3. Compensating for Large Capacitive Loads with a Pull Up Resistor

PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK

It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires special layout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6024, typically less than 0.04 pA, it is essential to have an excellent layout. Fortunately, the techniques for obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable.

To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LMC6024's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs. See *[Figure](#page-9-0) [4](#page-9-0)*. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of 10^{12} ohms, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5V bus adjacent to the pad of an input.

Application Hints (Continued)

This would cause a 100 times degradation from the LMC6024's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of 10¹¹ ohms would cause only 0.05 pA of leakage current, or perhaps a minor (2:1) degradation of the amplifier's performance. See *Figure 5a*, *Figure 5b*, *Figure 5c* for typical connections of guard rings for standard op-amp configurations. If both inputs are active and at high impedance, the guard can be tied to ground and still provide some protection; see *Figure 5d*.

The designer should be aware that when it is inappropriate to lay out a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an

insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See *[Figure](#page-10-0) [6](#page-10-0)*.

Application Hints (Continued)

(Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board.)

FIGURE 6. Air Wiring

BIAS CURRENT TESTING

The test method of *Figure 7* is appropriate for bench-testing bias current with reasonable accuracy. To understand its operation, first close switch S2 momentarily. When S2 is opened, then

$$
I^{-} = \frac{dV_{OUT}}{dt} \times C2.
$$

FIGURE 7. Simple Input Bias Current Test Circuit

A suitable capacitor for C2 would be a 5 pF or 10 pF silver mica, NPO ceramic, or air-dielectric. When determining the

magnitude of I[−] , the leakage of the capacitor and socket must be taken into account. Switch S2 should be left shorted most of the time, or else the dielectric absorption of the capacitor C2 could cause errors.

Similarly, if S1 is shorted momentarily (while leaving S2 shorted)

$$
I^+ = \frac{dV_{OUT}}{dt} \times (C1 + C_x)
$$

where C_x is the stray capacitance at the +input.

Typical Single-Supply Applications $(V^+ = 5.0 V_{DC})$

Photodiode Current-to-Voltage Converter

01123515

Note 14: A 5V bias on the photodiode can cut its capacitance by a factor of 2 or 3, leading to improved response and lower noise. However, this bias on the photodiode will cause photodiode leakage (also known as its dark current).

(Upper limit of output range dictated by input common-mode range; lower limit dictated by minimum current requirement of LM385.)

Typical Single-Supply Applications (V⁺ = 5.0 V_{DC}) (Continued)

1 Hz Low-Pass Filter (Maximally Flat, Dual Supply Only)

High Gain Amplifier with Offset Voltage Reduction

Gain = -46.8 Output offset voltage reduced to the level of the input offset voltage of the bottom amplifier (typically 1 mV), referred to V_{BIAS}.

Ordering Information

LMC6024 LMC6024

